CXC Chemokines Exhibit Bactericidal Activity against Multidrug-Resistant Gram-Negative Pathogens
نویسندگان
چکیده
The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens.IMPORTANCE As bacterial pathogens become resistant to multiple antibiotics, the infections they cause become increasingly difficult to treat. Carbapenem antibiotics provide an essential clinical barrier against multidrug-resistant bacteria; however, the dissemination of bacterial enzymes capable of inactivating carbapenems threatens the utility of these important antibiotics. Compounding this concern is the global spread of bacteria invulnerable to colistin, a polymyxin antibiotic considered to be a last line of defense against carbapenem-resistant pathogens. As the effectiveness of existing antibiotics erodes, it is critical to develop innovative antimicrobial therapies. To this end, we demonstrate that the chemokines CXCL9 and CXCL10 kill the most concerning carbapenem- and colistin-resistant pathogens. Our findings provide a unique and timely foundation for therapeutic strategies capable of countering antibiotic-resistant "superbugs."
منابع مشابه
Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria
BACKGROUND Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. RESULTS This study evaluated the in vitro activity of si...
متن کاملBactericidal effect of silver nanoparticles against multidrug-resistant bacteria
Infections caused by drug-resistant microorganisms result in significant increases in mortality, morbidity, and cost related to prolonged treatments. The antibacterial activity of silver nanoparticles against some drug-resistant bacteria has been established, but further investigation is needed to determine whether these particles could be an option for the treatment and prevention of drugresis...
متن کاملAn Increase in Antimicrobial Effects of Standard Antibiotics in Combination with the Active Metabolites Isolated from Marine Streptomyces: A Laboratory Study
Background and Objectives: Combination therapy has been considered as a potential approach to overcome antimicrobial resistance. In this study the antimicrobial effects of active compounds produced by some marine Streptomyces spp. in combination with some standard antibiotics against multidrug-resistant pathogens was investigated. Materials and Methods: In this laboratory study, the bacteria i...
متن کاملRepurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens
Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation...
متن کاملMultidrug Resistance in Infants and Children
Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is ...
متن کامل